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ABSTRACT

CAREY, D. L., K. M. CROSSLEY, R. WHITELEY, A. MOSLER, K.-L. ONG, J. CROW, and M. E. MORRIS. Modeling Training

Loads and Injuries: The Dangers of Discretization.Med. Sci. Sports Exerc., Vol. 50, No. 11, pp. 2267–2276, 2018. Purpose: To evaluate

common modeling strategies in training load and injury risk research when modeling continuous variables and interpreting continuous

risk estimates; and present improved modeling strategies. Method: Workload data were pooled from Australian football (n = 2550) and

soccer (n = 23,742) populations to create a representative sample of acute:chronic workload ratio observations for team sports. Injuries

were simulated in the data using three predefined risk profiles (U-shaped, flat and S-shaped). One-hundred data sets were simulated with

sample sizes of 1000 and 5000 observations. Discrete modeling methods were compared with continuous methods (spline regression and

fractional polynomials) for their ability to fit the defined risk profiles. Models were evaluated using measures of discrimination (area

under receiver operator characteristic [ROC] curve) and calibration (Brier score, logarithmic scoring). Results: Discrete models were

inferior to continuous methods for fitting the true injury risk profiles in the data. Discrete methods had higher false discovery rates (16%–21%)

than continuous methods (3%–7%). Evaluating models using the area under the ROC curve incorrectly identified discrete models as superior

in over 30% of simulations. Brier and logarithmic scoring was more suited to assessing model performance with less than 6% discrete model

selection rate. Conclusions: Many studies on the relationship between training loads and injury that have used regression modeling have

significant limitations due to improper discretization of continuous variables and risk estimates. Continuous methods are more suited to

modeling the relationship between training load and injury. Comparing injury risk models using ROC curves can lead to inferior model

selection. Measures of calibration are more informative judging the utility of injury risk models. Key Words: ACUTE:CHRONIC

WORKLOAD RATIO, INJURY RISK, ROC CURVES, CALIBRATION

O
ne of the challenges for coaches, physical prepara-
tion practitioners, clinicians, and researchers in
sports science and sports medicine is estimating the

risk of injury during sporting competitions and training (1,2).
Relationships between training loads and injuries have been
studied extensively in recent publications (2–14). Training
load has been reported as a key injury risk factor in recent
consensus statements (1,15). Studies of training loads and

injuries often model the relationships between continuous risk
factors (e.g., cumulative load or acute:chronic workload ratio
[ACWR]) and binary outcomes (injury or no-injury) (4–14).

Discretization is the practice of transforming continuous
data into discrete categories and is a prevalent methodology in
studies of training load and injury risk (4–10). Discretization
methods in sports medicine research include median splits
(5,7), percentiles (5,6,13), z-score categories (4,7), and arbitrary
bins (8–10). These methodologies have not been critically
examined in the context of modeling training loads and in-
juries. Discretization of continuous covariates in risk models
has been criticized in other fields (16–19). Discretization of a
continuous risk factor into categories assumes that each in-
dividual within that category has equal risk. For example, if
cumulative training load is split into low, medium, and high
categories using percentiles, then it is assumed that each ath-
lete in the high category has identical risk, irrespective of how
broad the category is (i.e., an athlete at the 67th percentile is
considered to be at the same risk as one at the 99th percentile).
This practice causes a loss of information because within-
category variation is ignored (17). The loss of information
lowers the statistical power of the study and may reduce the
ability to detect relationships between variables, increasing the
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likelihood of a false-negative result (17,18,20). Discretization
can also lead to inflated false discovery rates (17,18). It is
common for studies using discretization to analyze results by
choosing a reference category and making multiple compar-
isons to each other category, increasing the chance of finding
a significant result (17). It has also been shown by Wainer
et al. (21) that categorization of continuous variables can
make trends appear in otherwise unrelated data if there is
freedom to choose the boundaries of the categories. Modeling
methods that allow risk factors to vary continuously, such as
cubic regression splines and fractional polynomials have there-
fore been advocated as appropriate alternatives to discretization
for modeling nonlinear risk profiles in epidemiology (16,20).

The increase in studies investigating training load as a risk
factor for injury has been accompanied by an increase in
studies exploring injury prediction (5,11,12,14,22,23). Injury
prediction models have been evaluated and compared using
metrics, such as sensitivity, specificity or area under the receiver
operator characteristic curve (AUC) (5,11,12,14,22,23). These
scoring metrics are designed to evaluate binary predictions
(i.e., injury or no-injury) and look at how often the model
predictions match the actual outcomes (24). In a practical
setting, where there is a clinician or coach to synthesize other
sources of information to make a contextualized judgment, a
model would not be expected to make a yes/no decision. In
this scenario, it could be more informative to evaluate injury
risk models using measures of calibration (19,25). Calibration
refers to how well a model is able to estimate the probability
of an event (24).

In this study, we critically evaluated the modeling and
evaluation methodologies found in the existing literature on
the relationships between training load and injury. Training
load data collected from Australian football (6) and soccer
(26) were used to generate a set of hypothetical data sets with
known injury risk profiles (27). Discrete risk models using
z score, percentile, and arbitrary binning methods (4–10)
were compared with continuous methods, regression splines,
and fractional polynomials (16,20). Models were evaluated
using measures of discrimination (AUC) and calibration
(Brier score) to assess which metrics were the most infor-
mative for assessing the utility of risk models (24).

METHODS

Training Load Data

The ACWR is a relative training load variable calculated
by dividing an athlete_s acute workload (typically 1 wk) by
their chronic workload (typically 4 wk) (2,27). It is a bounded
continuous variable that has been studied extensively as an
injury risk factor (2–14). The ACWR data were pooled from
two studies on separate male populations; a two season study
at a single Australian Football club (6) (n = 2550), and a two-
season study of 17 soccer teams in the Qatar Stars League
(26) (n = 23,742). One-week acute and 4-wk chronic periods
(overlapping) were used for both data sets. Total distance was

used as the load variable in the Australian football data set
and training/match duration in the soccer data set (the only
available load metric). Combined, these data had a mean and
standard deviation of 1.05 and 0.42; similar to values reported
in previous studies (5,7,8) (see Figure, Supplemental Digital
Content 1, histogram of ACWR values, http://links.lww.com/
MSS/B302). The pooling of data from independent sources
was done to ensure the distribution of values used in the
simulations was as representative as possible (i.e., it is a good
approximation of what a researcher could expect to collect in
a hypothetical future study). Alternate ACWR calculation
methods that use exponentially weighted averages (28) or
decouple the acute and chronic time windows (29) have been
proposed. These modifications likely change the distribution
of ACWR values (e.g., decoupling causes the ACWR to be-
come unbounded). Despite this, each method still produces a
continuous variable and the investigation into the effects of
discretization in this study remains relevant irrespective of the
ACWR calculation method. Ethical approval for this study was
obtained from the ShafallahMedical Genetics Centre, Approval
number: 2012-017 and the La Trobe University Faculty of
Health Sciences Human Ethics Committee (FHEC14/233).
Informed consent was obtained from the participating teams
for the analysis of deidentified data.

Injury Risk Profiles

Traditional research designs collect data and build models
in an attempt to estimate the true relationship between
variables of interest (e.g., ACWR and injury). To evaluate
different modeling approaches we have used a different
strategy. Artificial injuries were inserted into existing training
load data based on predefined risk profiles. This enabled us to
compare different models based on howwell they were able to
recover the true relationship in the data. Three predefined
theoretical risk profiles were considered (Fig. 1).

� U-shaped: To align with the hypothesized relationship
between ACWR and injury (2,27), with minimum risk
corresponding to ACWR = 1.

FIGURE 1—Theoretical risk profiles used to simulate injuries.
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� Flat: To represent the null hypothesis that ACWR does
not influence injury risk (every observation poses a
uniform 5% injury risk).

� S-shaped: An alternative risk profile that has injury risk
as constant (2%) for ACWR G 1 then rises sharply to
very high injury risk.

Details on the mathematical form of risk curves can be
found in the supplementary text (see text, Supplemental
Digital Content 2, equations of risk profiles, http://links.lww.
com/MSS/B303).

Simulating Study Data

To examine the outcomes of different modeling approaches,
we simulated hypothetical new studies using the data collected
from Australian football and soccer (6,26). The simulation
procedure was:

� Choose a sample size (Ns) and randomly choose Ns

observations of ACWR from the pooled data distribution
(see Figure, Supplemental Digital Content 1, histogram
of ACWR values, http://links.lww.com/MSS/B302).

� Assign an injury probability (pi) to each observation
using one of the predefined theoretical risk profiles
(Fig. 1).

� Randomly generate injuries by treating each observa-
tion as a Bernoulli trial with probability of injury pi.
Simply, this means for an observation with injury risk
of 20%, we randomly assigned it an injury or no-injury
label with probability 0.2 and 0.8, respectively.

We considered study sizes of 1000 and 5000 observations
(representing a single-season or multiseason study in team
sport) and three different risk profiles (U-shaped, flat, and
S-shaped). For each of these six combinations, we simulated
100 studies to estimate the variability in any results. Simula-
tions were performed using the R statistical computing
language (30). An implementation of the simulation proce-
dure is included in the supplementary code (see text, Sup-
plemental Digital Content 3, simulation code, http://links.
lww.com/MSS/B304).

Training Load—Injury Models

Two types of modeling approach were considered, discrete
and continuous. Discrete models were defined as those that
applied a discretization strategy to the ACWR values before
modeling them against injury incidence. We considered three
different discretization methods to reflect those found in the
existing literature (4,5,7–10,13).

� D1: Normalize ACWR values (z-score) then split into
seven categories using cutpoints: {jV, j2, j1, 0, 1,
2, 3, V} (4,7).

� D2: Split into five quantiles (5,6,13).
� D3: Split the ACWR into five categories using the

cut-points: {0, 1, 1.35, 1.5, 2, V} (10).

After discretization, ACWR was modeled against injury
incidence using binary logistic regression, with the central
group used as the reference level. This method of analysis
replicates that commonly used in previous studies (8–10,13).

To contrast the discrete models, two continuous modeling
methodologies (C1 and C2) were considered. The continuous
methods apply a transformation to the independent variable
(ACWR) within the logistic regression. This allows for nonlinear
relationships that vary continuously to be modeled.

� C1: Restricted cubic splines model relationships by
subdividing the range of values of the covariate (at loca-
tions called knots), and fitting a cubic polynomial between
each pair of knots. The polynomials are constrained to join
smoothly at each knot and to be linear in the two outer-
most regions (19). Restricted cubic splines are a common
method of analysis in epidemiological studies of nonlinear
dose–response relationships (16,19,20). Spline models
were fitted in R using the splines package (30). Spline
regression models were constructed with three internal
knots placed at equally spaced percentiles (19,20). The
number of knots was chosen a priori in this study but in
general can be chosen by comparing multiple options
using an objective criterion (e.g., Akaike information
criterion (AIC)) (19).

� C2: Fractional polynomials are a flexible method of
modeling nonlinear, continuous relationships. Fractional
polynomials consider a combination of candidate func-
tions and select a final model after a series of tests for
nonlinearity and complexity (31). A potential benefit of
fractional polynomials over cubic splines is that they are
more interpretable. The final model can be described by
a closed form equation and offers potential insight into
the underlying relationship. Their drawback is that they
are a global model (i.e., they fit the entire range of data
with a single function) and, therefore, cannot fit local
features as well as splines. Fractional polynomial models
were fitted in R using the mfp package (30,32).

Presently, few studies of the relationship between ACWR
and injury have used modeling methods that allow for
nonlinear trends and avoid discretization of the ACWR. An
implementation of each modeling method considered is included
in the supplementary code (see text, Supplemental Digital
Content 3, simulation code, http://links.lww.com/MSS/B304).

Each of the models (discrete and continuous) was used to
produce estimates of injury risk for each ACWR observation
in the simulated data sets. This replicates a study design
from a team sport environment where workload risk factor
and injury outcomes are recorded daily.

Evaluating Injury Models

Comparison between true and modeled risk
curves. A direct comparison can be made between the
modeled risk profile and the true risk profile in this study
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because the function used to simulate the injuries was
predefined (i.e., it is exactly known, as shown in Fig. 1).
Root mean square error (RMSE) (24) was calculated for the
difference between the true risk and predicted risk for each
observation in each simulated study. This provides a measure
of how well the modeling procedure was able to recover the
true risk profile used to generate the data.

False discovery and false rejection rates. The flat
injury risk profile was used to estimate the false discovery
rate for each modeling approach (Fig. 1). Data simulated under
the flat profile contained no association between ACWR and
injury risk. Therefore, any simulated study finding a significant
relationship in the data could be considered a false discovery
(Type I error). Significance testing for discrete models (D1,
D2, D3) was performed by comparing the reference ACWR
level to all other levels in the discretized ACWR (4,5,7–10,13).
A simulation was deemed to have a significant finding if any of
the 95% confidence intervals for the odds ratios did not contain
1. Significance testing for spline regression (C1) and fractional
polynomials (C2) was performed by comparing to a null model
using the likelihood ratio test with > = 0.05 (32).

False rejection rates (type II error) were estimated for each
model by counting the number of times no significant result
was found when the data were simulated with a U-shaped or
S-shaped risk profile. Discretizing continuous variables causes
a decrease in statistical power (17,18), potentially causing the
false rejection rates of discrete models to increase.

Receiver operator characteristic. The AUC has been
used to evaluate predictive models of training load and injury
in previous studies (5,11,12,14). The AUC measures the
ability of the model to discriminate between the two outcome
classes (injury and no-injury). It has been used as a way to
select the best performing injury prediction model in studies
comparing multiple methods (11,12,14,23). Cross-validation
(10-fold) was used to obtain estimates of AUC for each
simulated study. Without some kind of resampling or out-of-
sample testing, the results can be positively biased (i.e., they
will be better than could be expected in practice) (24).

Calibration. Calibration is a measure of how well a
model is able to estimate the probability of an event. It can be
assessed visually by constructing calibration curves (19,33).
Calibration curves show how closely the predicted probabil-
ities match the observed event rates (i.e., for observations
estimated to have injury risk of 20%—was the actual injury
incidence rate on those days around 20%?). Calibration can
also be assessed quantitatively by computing the Brier score
or logarithmic scoring rule (19). In the case of a binary out-
come variable, the Brier score is calculated as the square of
the probability assigned to the incorrect class (e.g., if the
model predicts injury with probability 0.2, and there was no
injury, the Brier score would be 0.22 = 0.04, but if there was
an injury, then the score would be 0.82 = 0.16). A lower Brier
score indicates a better model. The logarithmic scoring rule is
evaluated by taking the natural logarithm of the probability
assigned to the correct class (e.g., a predicted injury proba-
bility of 0.2 and no injury would score log(0.8) =j0.22, and if

there was, an injury would score log(0.2) = j1.61). A higher
score indicates better probability estimates. Logarithmic
scoring may be more appropriate than the Brier score in the
case of rare event estimation (34). Brier and logarithmic
scores were estimated for each model and simulated study
using 10-fold cross-validation (24).

Longitudinal Models of Training Loads and Injury

For clarity of message in the previous sections, we have
simulated ACWR and injury data with no correlation structure
and used logistic regression assuming independence of ob-
servations to illustrate the effects of discretization. However,
training load monitoring data collected from sporting teams
often consists of repeated measurements taken from the same
athletes. It is therefore possible that the observations from the
same athletes will be correlated. To investigate the effects of
this correlation on injury risk modeling, we simulated lon-
gitudinal training load data sets using the SimCorMultRes
package (35) (see text, Supplemental Digital Content 3,
simulation code, http://links.lww.com/MSS/B304). Injuries
were simulated in the data by defining a marginal risk pro-
file and specifying a within-subject correlation strength (35).
Four longitudinal data sets were simulated (100 times each)
to investigate the effects of different sample sizes, within-
subject correlations and marginal risk profiles. The first
simulated 50 observations from 20 participants with a U-shaped
marginal risk (Fig. 1) and a within-subject correlation of 0.1.
The second increased the correlation strength to 0.7. The third
considered a larger sample size of 100 observations from 50
participants. The fourth considered the effect of reducing the
strength of the marginal risk by reducing the injury risk by a
factor of 0.5 for each ACWR value.

Each longitudinal data set was analyzed using naBve logistic
regression (i.e., assuming independence of observations) and
generalized estimating equations (GEE) (36). The GEE
models have been used in previous studies of training load
and injury (5,12,14). The GEE models were fitted using the R
package geepack (37) using a binomial link and exchangeable
working correlation structure. Both analysis methods allowed
for the relationship between ACWR and injury risk to vary
continuously using restricted cubic splines (as previously
described). Modeling approaches were compared for their
ability to recover the predefined marginal effect of ACWR on
injury risk using RMSE. Additionally, significance testing
was performed for each simulated study result by comparing
to a null model using a likelihood ratio test (see text, Sup-
plemental Digital Content 3, simulation code, http://links.
lww.com/MSS/B304).

RESULTS

Simulated Studies

Details of the simulated studies (injury summary statistics)
are found in supplementary Table 1 (see Table, Supplemental
Digital Content 4, simulated injury statistics, http://links.lww.
com/MSS/B305).
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Comparison between True and Modeled
Risk Profiles

A visual inspection of how well each modeling procedure
was able to recover the true risk profile used to generate the
data is shown in Figure 2. It is clear that models that discretized
the ACWR (Fig. 2(D1-3)) are unable to fully capture the
U-shaped relationship. Continuous modeling methods C1
(spline regression) and C2 (fractional polynomials) fared
much better at fitting the true risk profile (see Figures,
Supplemental Digital Content 5, S-shaped risk, http://links.
lww.com/MSS/B306 and Supplemental Digital Content 6,
flat risk, http://links.lww.com/MSS/B307).

The RMSE performance of each modeling strategy under
the different simulation parameters is shown in Figure 3.
Continuous modeling methods (C1, C2) had noticeably lower
RMSE for data generated using a U or S-shaped injury risk
profile (particularly in larger simulated studies with Ns = 5000).
The difference between discrete and continuous methods was
less pronounced for the flat injury risk profile. In general, the
total error and variance in error for each model tended to
decrease when the simulated sample size increased from
1000 to 5000 observations.

False Discovery Rates

Discrete modeling methods had higher false discovery
rates than continuous methods (Fig. 4). For 100 simulated
studies with flat injury risk profile (i.e., no relationship in the
data) and 5000 observations, discrete models (D1, D2, D3)
had false discoveries 21, 16, and 16 times, respectively. The

continuous methods had false discovery rates of 7/100 and
3/100 for C1 and C2, respectively. Alarmingly, in the 100
simulated studies, we found that at least one of the three dis-
crete methods had a false discovery 42 times.

Choice of reference level. Discretizing the ACWR
then running a logistic regression introduces another choice
into the modeling procedure when the reference level is
chosen by the researcher. There has been little consistency in
existing studies, with the lowest (10,13), highest (8), and
central ACWR interval (5) being used. This freedom of
choice is an issue because it can change the reported find-
ings. For example, using discrete model D1 and a flat risk
profile; 11 of 100 simulations had a false discovery if the
highest interval was used as the reference, but if the central
interval was used, this increased to 21 of 100 false discov-
eries. Avoiding discretization and modeling a continuous
relationship removes this choice.

False Rejection Rates

Discrete methods (D2, D3) had higher false rejection rates
when data were simulated with U-shaped or S-shaped risk
profiles (see Table, Supplemental Digital Content 7, false re-
jection rates, http://links.lww.com/MSS/B308). For data sets
with 1000 observations and a U-shaped risk relationship, 59
and 57 of 100 simulated studies did not find a significant
result when analyzed using discrete methods D2 and D3
respectively. The false rejection rate wasmuch lower when using
methods D1 (5/100), C1 (12/100) or C2 (19/100). As expected,
increasing the sample size from 1000 to 5000 observations
reduced the false rejection rates for each modeling approach

FIGURE 2—Comparison of 100 simulated study results (Ns = 5000 and U-shaped risk) analyzed using discrete models (D1, D2, D3) and continuous
models (C1, C2). Solid line represents the true risk profile used to generate the data and each grey line represents one simulated study result.
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(see Table, Supplemental Digital Content 7, false rejection
rates, http://links.lww.com/MSS/B308).

Receiver Operator Characteristics

Area under the receiver operator characteristic (ROC)
curve was estimated for each of the 100 simulated studies
using 10-fold cross-validation (24). The continuous analysis
methods had higher median AUC values but did not clearly

outperform discrete methods under this evaluation metric. If
AUC was used to select the best performing model in each
simulation, we found that one of the discrete models was chosen
on 38 of 100 occasions and 31 of 100 occasions for U-shaped
and S-shaped risks, respectively (Table 1).

Calibration

To compare with ROC curves, Brier and logarithmic scores
were estimated for each model using 10-fold cross-validation
(19,24). When the Brier score was used to select the best
performing model in each simulation, discrete models were
chosen on only 6 of 100 occasions and 0 of 100 occasions for
U-shaped and S-shaped risks, respectively (Table 1). When
logarithmic scoring was used the rates were 3 of 100 and 1 of
100. Brier and logarithmic scoring favored the continuous
methods far more than evaluation with ROC curves.

Calibration curves offer a way to visually evaluate injury
risk models (Fig. 5). A calibration curve shows the relationship
between the predicted probabilities and actual event occurrence
rate (perfect calibration is represented by the diagonal line). An
exemplar set of calibration curves is shown in Figure 5 (one
simulated study with U-shaped risk and Ns = 5000). Ideally, a

FIGURE 3—RMSE of model probability estimates for 100 trials of each theoretical risk profile and sample size (red bar, median).

FIGURE 4—False discovery rates (of 100 simulated studies with Ns =
5000 and flat risk profile).
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well-calibrated risk model will have a curve that is close to the
diagonal line and covers a large range of probabilities (i.e., has
confidence in identifying both high- and low-risk scenarios).
Discrete model D2 provided little information other than the
baseline injury rate. Model D3 did not appear to be well
calibrated. Models D1, C1, and C2 were well calibrated (close
to diagonal line); however, the continuous methods covered a
much larger range of probabilities.

Longitudinal Data Models

The GEE and naive logistic regression models had simi-
lar ability to recover the marginal effect in each simulated
longitudinal data set (Table 2). Median RMSE values were
near identical for each approach. Increasing the sample size
(100 observations from 50 participants) lowered the median
RMSE values whilst increasing the within-participant corre-
lation strength increased the median RMSE (Table 2).

The naBve logistic regression approach (assuming inde-
pendence of observations) had higher false rejection rates (i.e.,
lower statistical power) than the GEE approach (Table 2). The
difference in false rejection rates became more pronounced
when the strength of relationship between ACWR and injury
risk was decreased (47/100 for logistic vs 18/100 for GEE).
Using a larger sample size caused the false rejection rate to drop
to zero for both methods. Increasing the strength of within-
participant correlation did not have a strong effect on false
rejection rates.

DISCUSSION

Discrete versus Continuous Modeling Strategies

Discrete models showed limited ability to capture the risk
profiles used to generate the simulation data (Figs. 2–3).
Discretization forced the models to fit an unrealistic and
discontinuous step profile to the data (Fig. 2 and Supple-
mental Digital Content 5, S-shaped risk, http://links.lww.
com/MSS/B306). This illustrates how discretization of
continuous risk factors can lead to inaccurate estimation of
effects (17,20). Figure 2 shows how using percentile splits
(method D2) groups a large range of ACWR values together
and provides an inaccurate estimated effect that is far lower
than the true risk for ACWR values greater than 2. Similarly,
the ACWR categories used in method D3 assume homogeneity

FIGURE 5—Comparison of cross-validated calibration curves from a single simulated study (Ns = 5000 and U-shaped risk) analyzed using discrete
(D1, D2, D3) and continuous models (C1, C2). Diagonal line represents perfect calibration and shaded area represents 95% CI. 95% CI, 95%
confidence interval.

TABLE 1. Comparison of model selection rates using AUC, Brier score, and logarithmic
scoring as the evaluation metric (Ns = 5000).

No. Times Selected as Best Model (/100 Simulated Studies)

U-Shaped Risk S-Shaped Risk

Method ID AUC Brier Logarithmic AUC Brier Logarithmic

D1 28 6 3 15 0 1
D2 2 0 0 0 0 0
D3 8 0 0 16 0 0
C1 35 80 70 26 73 75
C2 27 14 27 43 27 24
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of risk over the range 0 to 1, leading to an estimated effect that
cannot capture the rise in risk seen for small ACWRvalues. Our
simulations suggest that the discrete methods found in the
current literature (4–8,10,13) are unsuited to modeling the
continuous U-shaped risk profile between ACWR and injury
proposed in the literature (2,27).

Continuous modeling methods (spline regression and
fractional polynomials) were better suited to fitting the
nonlinear risk profiles (U-shaped and S-shaped) and provided
more accurate estimated effects. This was demonstrated by
lower RMSE scores (Fig. 3) and also confirmed visually by
the 100 simulations shown in Figure 2. These findings align
with recommendations from other fields that continuous
modeling methods are preferable to discretization (17,20).
Future studies may benefit from using continuous modeling
methods instead of discretizing continuous training load var-
iables when analyzing their relationship to injury.

False Discovery Rates

Data generated under the assumption that ACWR had no
relationship to injury risk (Fig. 1, flat risk profile) was used
to estimate the false discovery rate for each modeling ap-
proach. False discovery rates were inflated by using discrete
models (16%–21%) (Fig. 4). Splitting the ACWR into mul-
tiple categories before modeling leads to multiple compari-
sons between groups and may explain the higher false
discovery rates (17,18). Discrete method D1 used the most
categories (7 groups) and had the highest false discovery rate
(21%). A secondary issue was the choice of reference level
when categorical predictors are used in generalized linear
models (e.g., logistic or Poisson regression). Discrete model
D1 had 21/100 false discoveries when the central ACWR
category was used as the reference but only 11/110 if the
highest was used.

There is currently no consensus in the literature regarding
the discretization strategy or choice of reference level when
modeling ACWR and injury risk (5,8,10,13). The apparent
freedom of choice of discretization and reference level may
have caused highly inflated false discovery rates in previous
studies (38). When a choice of only three methods was
considered in our simulations false discovery rates were as
high as 42% (Fig. 4). Continuous modeling methods do not
require choosing a reference level and do not suffer from
multiple comparisons between predictor categories. Spline
regression and fractional polynomials had substantially
lower false discovery rates (7% and 3%).

False Rejection Rates

Models that transformed the continuous ACWR into dis-
crete categories showed higher false rejection rates in the
simulated studies (see Table, Supplemental Digital Content 7,
false rejection rates, http://links.lww.com/MSS/B308). This
aligns with findings from other studies that discretization
lowers statistical power (17,18,20). Simulations using a larger
sample size (Ns = 5000) were not as prone to false rejections,
highlighting the benefits of larger sample sizes. The negative
consequences of discretization on statistical power are partic-
ularly relevant for research in elite sport cohorts where sample
sizes are often constrained.

Evaluating Injury Risk Models

ROC curves. Comparing models using the area under
the ROC curve did not always identify that continuous
methods were better fits to the risk profiles (Table 1). RMSE
scores showed that continuous methods were clearly superior
when modeling U-shaped or S-shaped risk profiles when a
sample size of 5000 observations was used (Fig. 3). Despite
this, AUC incorrectly identified discrete methods as superior
in 38 and 31/100 simulations for U and S-shaped risk (Table 1).
This suggests that using AUC as the sole evaluation metric
when selecting injury prediction models (11,12,14) runs the
risk of selecting an inferior model.

A ROC curve is constructed by sampling through the
possible decision thresholds that could be applied (i.e., cut
points where the models makes an injury or no-injury pre-
diction). This may not realistically represent the purpose of
the model if it to be used for risk estimation. If the output of
the model is used along with context and clinical judgment,
and not required to make a binary decision, then AUC may
not be an appropriate evaluation metric (25). The ROC curves
also assume that false positive errors and false negative errors
are of equal consequence (39). This is likely not the case
when a false negative means an injured athlete and a false
positive may be a modified or missed training session. We
suggest that ROC curves in isolation are insufficient to
evaluate the performance of injury prediction models.

Probabilistic scoring and calibration curves. Eval-
uating the modeling strategies with Brier scores and loga-
rithmic scoring strongly favored the continuous models
(Table 1). Discrete models were selected in only 6/100 and
0/100 simulations using the Brier score and 3/100 and 1/100
when using logarithmic scoring. These provide a much closer
reflection of the RMSE scores (ground truth) than evaluating

TABLE 2. Comparison of logistic regression and GEE modeling for longitudinal data.

Significant Results (/100) Median RMSE (IQR)

Marginal Risk Profile
Study Size

(Observations � Participants)
Correlation
Strength Logistic GEE Logistic GEE

U-shaped 50 � 20 0.1 84 95 0.020 (0.013–0.025) 0.021 (0.014–0.025)
U-shaped 50 � 20 0.7 86 97 0.030 (0.024–0.037) 0.028 (0.021–0.035)
U-shaped 100 � 50 0.1 100 100 0.009 (0.007–0.012) 0.009 (0.007–0.011)
U-shaped (dilated 2) 50 � 20 0.1 53 82 0.013 (0.011–0.017) 0.014 (0.011–0.017)
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models with AUC. The Brier and logarithmic scores are
probabilistic scoring rules designed to evaluate probability
estimates (19) and are therefore better suited to assessing injury
risk models. We suggest that Brier scores, logarithmic scoring,
or another comparable probabilistic scoring rule (34) be in-
cluded in future studies to compare injury risk models.

Calibration curves (Fig. 5) provided an informative visu-
alization of the performance of injury risk models (33). They
showed how closely the risk estimates of each model matched
the observed injury rates and how well each model discrimi-
nated between high and low risk instances. Figure 5 clearly
shows that continuous models gave more informative proba-
bility estimates (closer to the observed event rates and over a
larger range of values) than the discrete models. Calibration
curves show absolute risks and thus may be a more important
result for clinicians and decision makers (40).

Longitudinal Models

Extending the simulation study to include correlated
within-individual observations showed the negative effects
of incorrectly assuming independence between repeated
measurements. The naBve logistic regression approach had
higher false rejection rates than a GEE approach (Table 2).
Assuming independence can cause the standard errors for
time varying covariates to be overestimated (41) and may have
been the cause of the inflated false rejection rates. When the
strength of the ‘‘signal’’ in the data was decreased the difference
between logistic and GEE approaches became more pro-
nounced, and the naBve logistic approach had very high false
rejection rate (47/100). This highlights the importance of ac-
counting for correlated observations when modeling longitu-
dinal training load data, particularly if the expected strength of
signal in the data is small.

Both longitudinal modeling approaches showed similar
ability to recover the true marginal risk profile. This is likely
because the parameter estimates from logistic regression and
GEE models are generally very similar (41). In all simulations,
larger sample sizes improved the accuracy of model estimated
effects, suggesting the potential benefits of collaborative
studies with large sample sizes.

Limitations and Extensions

Restricted cubic spline regression and fractional poly-
nomials were considered as the alternative modeling methods
in this study. Although they are common approaches for
modeling nonlinear relationships (16,20) they are not the only
possible approaches. A number of other nonparametric and

semi-parametric methods may have been suitable (e.g.,
locally weighted regression, generalized additive models, and
smoothing splines) (19).

We did not consider multivariable modeling and used only
a single covariate (ACWR) in our simulations. This was done
for clarity of the message. The issues caused by discretization
are equally problematic in multivariable modeling. Spline and
fractional polynomial techniques can still be used when there
is more than one covariate to allow for proper modeling of
continuous variables (19,32). For example, recent studies
have investigated the effect of ACWR on injury risk moder-
ated by absolute chronic workload dichotomized using a
median split (4,5,7). This dichotomization removes a signif-
icant amount of variation in the data, leading to decreased
statistical power and inaccurate estimation of effects (17,20).
It is possible, and we would suggest more appropriate, to
avoid discretization and model both risk factors continuously
using a technique such as restricted cubic surfaces (19). This
study did not consider time-to-event approaches for modeling
training loads and injury (e.g., survival analysis and Cox
regression (42)). Discretization of baseline or time-varying
covariates can have similar consequences on statistical power
and estimated effects in these contexts and continuous ap-
proaches are advised (19).

CONCLUSIONS

Modeling methods that discretize continuous risk factors
are inappropriate for studying the relationship between train-
ing loads and injuries. Discrete models have inflated false
discovery and false rejection rates and are unsuited to fitting
nonlinear risk profiles. Strong justification is required for
research that chooses a discrete approach and we suggest
avoiding discretization and modeling relationships with
continuous methods, such as spline regression or fractional
polynomials. Accounting for correlated observations in lon-
gitudinal training data decreases the risk of false rejection.
Evaluating injury risk models using ROC curves may not
reflect their practical use and may lead to inferior model
selection. Probabilistic scoring methods, such as Brier scores,
logarithmic scoring, and calibration curves, may be more
informative when assessing injury models.
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